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Abstract—The problem of vibration of viscoelastic beams and plates subjected t0 a known transient
temperature distribution and simply supported boundary conditions has been solved using a Williams-type
modal expansion technique. The viscoelastic property ascribed is linear but otherwise general and its
temperature dependence follows a thermorheologically simple viscoelastic law. The internal damping
considered is proportional to the velocity of motion. The measured material relaxation has been charac-
terized using a Dirichlet Series which represents a Maxwell chain. The analytical solution is based upon
superposing a time dependent “static” problem that contains the time-varying boundary conditions and 2
“reduced dynamic™ problem that contains the inertia terms and the homogeneous boundary conditions. The
integro-differential equation that results from the dynamic problem has been solved numerically using 2
fourth order Runge-Kutta method. Typical results are presented for epoxy resin and float glass. The
numerical data required are measured for epoxy resin and taken from published viscoelastic properties for
float glass. The experimentally measured free vibration response of epoxy resin beams at different but
constant temperature has been compared with the theoretically developed model.

1. INTRODUCTION

The mechanical vibration of a viscoelastic material introduces the effect of change in the
material properties with time and temperature, and the dissipation of energy due to periodic
variation of the applied stress level. Because of the change in properties with temperature, any
temperature distribution through the material will result in material properties being functions
of the space co-ordinates. The viscoelastic material property can be represented by Voigt,
Maxwell or Standard Linear Solid Models[1]. The limitation of these models is that they have
only one relaxation and retardation time. Since the real materials have a continuous relaxation
and retardation spectra. the material characterization can be improved by taking combinations
of the above said models. In the present analysis a Dirichlet series which represents a Maxwell
chain[2, 3] has been used. This representation avoids the storage of history effects and replaces
it by a simple recursion formula[4]. Daniel {5] has experimentally concluded that Poisson’s ratio
remains essentially a constant during wave propagation through viscoelastic materials. Also,
Winter[6] has experimentally shown that the Poisson’s ratio is relatively a constant for high
performance epoxy resins that are viscoelastic in nature. This hypothesis of constant Poisson’s
ratio has been used in this analysis.

Valanis[7] has shown that the solution to a viscoelastic vibration problem can be obtained
by superimposing a “static problem” and a “reduced dynamic problem”. This method is
restricted to a constant Poisson’s ratio and a separable form of boundary conditions.
Robertson{8] has used this technigue to solve the forced motion of a viscoelastic circular plate.
Another technique based on William's method, first used for solving the forced motion of
elastic beams[9, 10] was generalized by Reismann[11] to elastic continna. Robertson[12] used
this technique to solve the forced motion of viscoelastic circular plates. This method which
allows time varying tractions and displacement on the boundary as well as time varying body
forces was extended to viscoelastic media by Robertson and Thomas[13]. All the work
mentioned here are restricted to a uniform temperature through the body. In the present work
the Williams method has been used to accommodate the time varying boundary conditions
resulting from the transient temperature distribution.

Almost all materials dissipate energy during cyclic loading. For materials which dissipate
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energy, the cyclic load deformation curve forms a hysteretic loop. The area enclosed by such a
loop is a measure of damping or energy dissipation of the material. For viscoelastic materials
the damping has a direct relation to frequency and temperature. Lazan[14] has discussed the
effect of temperature on damping. The material properties available in the literature are the
relaxation and creep data at different temperatures that are obtained by static experiments. In
the present analysis statically measured relaxation data has been used. Also to include the
damping effect due to cyclic loading, an equivalent viscous damping model has been developed
for both beams and plates (see Appendix A). The viscous damping model which assumes the
damping force, a function of frequency, to be proportional to the velocity has been shown by
Bandstra[15] to be fairly accurate up to 10% of critical damping. This covers a large percentage
of damping found in real life problems.

2. THEORY

2.1 Equation of motion for thermoviscoelastic beams and plates
Morland and Lee[16] included the general case of a temperature field T(x,) in the
constitutive equation for a thermoheologically simple material as

t
Sy 1) = f 26143 1)~ &5 O] €50 1) dF @.1)
defining the deviatoric stress component and
otz 0= [ 38k - 6t 1] erio )~ 3aab(s 1} 8 @2)
the volumetric stress component with the “reduced time” as
t
50 0= [ $1T(x, O a1 @3
and “pseudo temperature”
1 T(xp )
W= [ @Mt a0=a(T @.4)
apJr,

where T, is the unstressed temperature state. The pseudo temperature is introduced to account
for varying coefficients of thermal expansion. G(¢) and K(¢) are respectively the relaxation
modulus in shear and dilatation. The shift factor #(7T) is an intrinsic material property which
must be obtained experimentally.

For the beam element shown in Fig. | it can be easily shown using equilibrium, constitutive
and compatibility equations that

M a’w " Al+y)
- 2 - -
2b(1+v) I_m z F{G(f f)*ﬁax }dz baoj_m2 Z(l ~30) 35

2
BGE- &)+ o dz+an=pA TR+, 2 @.5)
is the equation of motion for the transverse vibration of a thermoviscoelastic beam where
1
f*g=f f(t-r)gggdr-

C, =the equivalent viscous damping per unit length; and » = Poisson’s Ratio (taken to be a
constant).



Mechanical vibrations in thermorheologically simple viscoelastic beams and plates 1009

4 0x,0
. m - L Sl Ry G
I :

A - i——b—qT
X ——d h—dx
I o
q(‘:')dl
QI
w( ] b Y s Sipex
q.igidx

PA%'%"dx +C, de

Fig. 1. Co-ordinate system used in the beam analysis.

The boundary conditions for a simply supported beam are
W=0

and

hi2
Gtzz—fdz+(1 2)] G *(Bagf)zdz =0 2.6)

~h2

at x =0 and x = L. This is valid for arbitrary initial conditions.
Similarly for the set of co-ordinates considered in Fig. 2 the equation of motion for a
viscoelastic simply supported plate can be shown to be

2] 2 2, 2 )
—%f_m 75 {D(f £)+ (-‘.,;yw"’ %)} az-33 22:7:{0@-6')*
2 2 W2
(5 %)}dl_vzJ:Hz%,%(1+v)D(§-§')*(2aoO)dz—i—§
@.7)
J'_ z(l—v);,;s{D(f &)+ axay}dz+q'(x,y,t) ph-7-+cp

where
_2u- o)k
D(g— f') = 12(1 — V)

and C, = the equivalent viscous damping per unit area. The boundary conditions for a simply
supported plate are
W =0,

N2
f D#-—TZ dz+]th(1;v)-3a00-zdz=0

on x=0and x = g, and
W=0
hi2

(1+v)

3 ——3a;02dz=0 (2.8)

Dt L dz+f D% e a
~h2 )’

on y=0and y = b. This is valid for arbitrary initial conditions.
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Fig. 2. Co-ordinate system used in the plate analysis.

3. HEAT CONDUCTION THROUGH A SLAB
The field equation for temperature distribution due to conduction of heat through a slab is
given by [17]

where 4 is the thermal diffusivity. The boundary and initial conditions considered respectively
are
T(-h2,t)=T,
T(h2,) =T,
and
T(z,0)=T,. (3.2)

The solution to the above problem is

0=T-T,=(T,-T) [%(I—-Z)—%Z%exp (—n—hzrr—q!)sm ) (z+l)]

where

Ny
It
~

- N

(3.3)
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4. SOLUTION TO THE EQUATION OF MOTION OF THERMOVISCOELASTIC
BEAMS AND PLATES
4.1 Solution to the equation of motion of a beam
For the temperature distribution given in Section 3, the equation of motion (2.5) reduces to

‘! w . 4pAL* aw 4L*
f.. G‘Ta?d TDBR(1+v) 3 bR(1+v) G ar @)
where Z =2z/h and n = x/L. The boundary conditions are
w=0
and
. 1-2v)h _3* - !
L z-Gt{Lﬁ{)—za—n‘g-}dz=—3aoj_l 3G+ 0d:z 4.2
atn=0andn=1,
The solution to the eqn (4.1) can be written as {13)
win, )= U(n, )+ 2. 0'"™(n) - qum(t) 4.3)
where U the “static solution™ satisfies
+1 4
I 26+2 Y 4s=0 44)
-1 81;
with
U=0
and
+1
J' fG-{(lsz_")h z U}dz--saof G 0ds 4.5)
-1
atn=0and n=1.
Also, the function v'™ is chosen to satisfy the elastic vibration problem
d'v'™ _ _4pAL* 2, m
d'l]‘ bhs(l + ) WY (4.6)
with
'™ =0
and
azv(m)
=0 4.7
T 4.7
at n=0and n =1, where w is the circular frequency of vibration.
The solution to eqn (4.6) is [18]
v'™ = C,, sin mmn 4.8)

where the constant C,, can be taken as unity without loss of generality.
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Substituting eqn (4.3) into eqn (4.1) and using eqns (4.4)~(4.7) and the orthogonal property of

v'™ the equation for the “reduced dynamic™ solution g,, becomes

d’qq . Cpd biP(1+v) [+ I*' 3U
Lo Cdm 44 2 = (m)
-d—??+pA e met S || POra0dz=-2] o™ dn

with the initial conditions

fv {w(x,0)= U(x, 0)}v"™(x)dV

qm(o) =
[ v(m)(x) . v(m)(x) dVv
v
and
{w(x,0)—- U(x, 0)}o'™(x)dV
4n(0) ==
IV v™(x) - o™(x)-dV

where w(x, 0) and w(x, 0) are the known initial conditions of eqn (4.1).

4.9)

4.10)

Hence the solution to eqn (4.1) reduces to solving the eqns (4.4) and (4.9) with the

appropriate boundary and initial conditions.

4.1.1 Solution method for the ‘“static” equation. Equation (4.4) represents the field equation for

the “static” part of the problem. Now, defining

+1
I 2G*»Udz=F(n,1)

then the eqn (4.4) becomes
d‘F _
& =°
along with the boundary conditions
F=0
and
#*F _
i g(t)

at n=0and 9 =1, where
- -6 EZ I«H _ _
g(t) (1 _zv)h » ZG * 9(2, t) dz.
The solution to eqn (4.12) is
F(n,0)=2(n~1)- g(0.

Therefore the solution for U is obtained by solving the integral equation

+1 _ _ 3(10L2 jﬂ _
2 - - —_
f_| ?Gr»Udz=-1(n l)(l—Zv)h . iG*0dz

@11

4.12)

4.13)

(4.14)

4.15)
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The numerical solution to the eqn (4.15) and the algorithm for the finite difference method used
in the solution is given in Section 6.

4.1.2 Solution method for the *“‘reduced dynamic” equation. Equation (4.9) represents the
“reduced dynamic™ equation of motion. Substituting eqgn (4.8) into eqns (4.9) and (4.10) the
“reduced dynamic™ equation and the initial conditions become

d’ Cyd o, -
_d%+p/; dqtk+w‘ I_l *G#*q dZ= —2] sin kmn - ?dn (4.16)
with
i
0 =2 [ sin krn{w(,0)~ U(s, 0} dn
and
l -
4@ =2 [ sin kn{sn,0)- Utn, O} d
where
4_4 bh (1 + V)
=k'n -4_AI7— 4.17)
Now, if the “static solution” U can be expressed in Dirichlet series
J
UG, 0= ntn -1 {Uo+ 3 Ue-ter, 4.18)
=1
the eqns (4.16) and (4.17) respectively become
d’ C T . 4 U _us
Sk pﬁ'&qf*“’*zf_. G+ qdz =pry (1-coskm 3 ghe 4.19)
and
1
0 =2 sin kmnw(n, 0~ U, 0} dn
with
4 J
G(0) = 77— (cos km —1) 2 +2 I sin karn - W(x, 0) dn. (4.20)

This is an initial value second order integro-differential equation that has been solved using a
fourth order Runge-Kutta method. The algorithm and the recursion formula developed in the
analysis are presented in Section 6.

4.2 Solution to the equation of motion of a plate

Since the temperature distribution considered (see Section 3) is a function of z and ¢ only,
the equation of motion (2.7) becomes

+1 2
= 4 45 2uing =2 8W 2 9w
L £D+Vwdi+i VM =-oh Z¥ -2 C, 2 @21)

where

L]
]
(3]
I
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and

T+ L
M1=L ( h”)Da(saoo)zdz.

The boundary conditions for simply supported edges become

w=0

onx=0and x=gq, and

W

r"(D*%‘;’-)-z‘zdz'w- My

ony=0and y=b.

Following the eqn (4.3), the solution to the eqn (4.21) can be written as

wix n)=Uxy0+3 3 v'™"(x,y) ¢\

where U the “static solution” satisfies

+1
j z"DtV‘Ud'z‘+-§-V2MT=0
-1
with the boundary conditions
U=0
+} aZU . 0---2_
L {D"a?}z dZ=-3 Mr
onx=0and x=g, and
U=0

+ PUY .. 2
LR E

on y=0and y = b. Now, v'™* is chosen to satisfy the elastic vibration problem

vlv(m.m - .\v"""”

(@)@

The boundary conditions for the above elastic problem are

where

v(m. n 0

a:v(m‘n) 0
axt

4.22)

4.23)

(4.24)

4.25)

(4.26)
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onx=0and x= g, and

vtm. L1 0
4.2
62 vfm. L3
s
ony=0and y=b.
The solution to the aqn {4.26) is{18]
"™ M(x, y) = A, sin -'!%'{ + sin %r_y_ (4.28)

where A,,, can be chosen to be unity without loss of generality.
Substituting eqn (4.23) into (4.21) and using the eqn (4.24) along with the orthogonal property
of v™™™ the equation for “reduced dynamic” solution g, can be shown to be

Sor i e [t [(3) 4 ()] 2 00 aues

f f pk—-r v'™"(x, y)dx dy

4.29)
f f v(m.n)(x, y) . v(m.n)(x, )’) dx dy
0 JO
with the initial conditions
f {w(x, y,0)— Ulx, y, 0)}p"™"(x, y)dV
Gma(0) =
[ vlm. ")(X, )’) . ”‘m, n)(x’ )’) d V
¥
and
{wix, 3,00~ Ulx, y, 0™ "(x, y)dV
Gma(0) = =¥ 4.30)

f ™ "x, y) - o™ "x, y)dV
v

where w(x, v, 0) and w(x, y, 0) are the known initial conditions of eqn (4.21).
4.2.1 Solution method for the ‘“static” equation. Equation (4.24) represents the field
equation for the “static” part of the solution. Now letting

f 2D VU dz+2 3 Mr = f(x, ) @31)

-
eqn (4.24) can be written as
Vf=0 4.32)
and a part of the boundary condition (4.25) yields
f=0 4.33)

on all edges. Hence f=( everywhere in the domain.
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Therefore the field equation becomes
+i
I D:{'ZVZUHZ(‘;") o}dz=o (4.34)
-1

along with the remaining boundary condition
U=90 {4.35)

on the boundaries. Now, defining

- +1
U=] D+ U dz
-

then eqn (4.34) becomes
V0 = g(t) (4.36)
where
gy=—411 2(“"’) j_ D+ 0dz
along with

U=0. 4.37)

The solution to eqn (4.36) can be expressed as
U= ; z Uy sin "—? sin i%! (4.38)

where U, are unknown coefficients to be determined. Now g(f) can be written in a double
Fourier series as

g(t)= ; ; D (1 - cos ka1 - cos I) sm-—-—-sm-—-[;x (4.39)

Substituting eqns (4.38) and (4.39) into eqn (4.36) the coeflicients Uy, are obtained as

O,=- ——59-)-‘— (1 —cos kxX1 - cos [x).

(}?*F)

Hence the “static solution” is obtained by solving the equation

n—- 'mx sin —= l-:;y

where k=1,3,5,...and I=1,3,5....
4.2.2 Solution method for the “reduced dynamic™ equation. Equations (4.29) and (4.30)
represent the *‘reduced dynamic™ equation of motion for a viscoelastic plate. Expressing the

+1 Sl
[ #DsUds= ‘6-2—(1-3"-%[ Dtodzzz

. 2k (4.40)
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“static” solution U in a Dirichlet series

siniw—xsinl—’;xl i
L
U= ;‘,z———r—p—[ Uit 3, Uye ] @41)

(e +5)

and substituting in eqns (4.29) and (4.30) along with equation (4.28), the “reduced dynamic”
equation and the initial conditions respectively become

.l J
o+ o) [ 2(G 1 quiti=-—h—n T e 4
’ mn (5 +52)
where m, n=1,2,... and

_[m* n*]_RWa'
A= [?*P]wa- 5

and
a pb
G (0) = = [ [ [w(x, y,0)~ U(x, y, 0)] sin 2= sin 22 dx dy
ab )y Jo a b
with

, _ 1 & U nmy
qmu(o)——[wr:g-]-;l-ﬁj+ I I w(z, y,0) sin 22X sin 3 dx dy. 4.43)

mn
a®

Comparing eqns (4.40) and (4.41) with eqns (4.15) and (4.19) respectively it can be seen that the
thermo-viscoelastic beam and plate equations have been expressed in a similar form.

5. EXPERIMENTAL MEASUREMENT OF RELAXATION AND LOG-DECREMENT DATA

5.1 Measurement of relaxation data

5.1.1 Description of apparatus. A schematic diagram of the apparatus used for obtaining the
torsional relaxation data is shown in Fig. 3. The apparatus consists of a top grip assembly with a
balance weight, the specimen and lower grip assembly in an air bearing. The specimen is
covered with a tubular, split-wound, power positioning furnace with individual controls for each
of the three heating zones. The furnace control has a capacity to maintain a set temperature to
within +0.5°F. The bottom shaft of the lower grip assembly is attached to a torque arm through
a load transducer. The load transducer consists of a two beam assembly with two strain gages
mounted on each one of them. The strain gages are powered using a d.c. power supply and the
output amplified by an amplifier before being recorded on a x-y-y recorder. A resistance pot
attached in between the lower grip shaft and the torque arm measures the relative change in the
applied twist caused by a change in the deflection of the beam due to the relaxation of the
material.

5.1.2 Experimental procedure. Epoxyt rods of 1.5 in. long and 0.2 in. in dia. were held in the
grips. A metallic sleeve was used to completely envelope the specimen to avoid any changes in
temperature due to radiation. The specimen was soaked at the required temperature for about
an hour after thermal stability was achieved. The temperature measurements were made using
thermocouples located as shown in Fig. 3. The torsional loading was developed by rotating the

1The epoxy resin investigated is representative of current high performance composite epoxy matrix resin systems. It
contains a multifunctional epoxy (tetraglycidylmethylene dianiline) an aromatic diamine curing agent (diaminodiphenyl-
sulfone) and an organometallic catalyst (boron trifiouride complex) and is referred to as 12K V10 in this paper.
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torque arm manually and locking the same at a previously determined position. The resistance
potentiometer was powered using a 6 V power supply and the strain gages using a HP-311
transducer amplifier indicator, The data was then recorded on a HP-17005A chart recorder.
Figure 4 shows the measured data for Hercules 12KV10 epoxy resin. A Dirichlet Series[3] of
the type G(t) = G(0)+ 2,G; e™"" where G; and 7, are the spring moduli and relaxation times has
been fit for the above measured data and the experimental data obtained by Woo[20] et al,, and
their results are presented in Tables 1 and 2 respectively.

5.2 Measurement of material damping

Figure 5 shows a schematic view of the experimental setup used for measuring the
damping of the epoxy material. Epoxy beams of dimension 5" X 5/8” x 1/8" were clamped at their
ends. The beam was forced sinusoidally at a known frequency at the center using an
electromagnetic shaker. The output from the force cell and the displacement pickup was then
fed to an oscilloscope to obtain a Lissajous pattern. The phase lag determined using the
Lissajous pattern was then used to calculate the equivalent log-decrement using the relation

d=tan ¢ ¢.1)
where ¢ is the phase angle between the forcing and the displacement functions. The experiment

was repeated at various temperatures and frequencies. The magnitude of the stress level was
maintained a constant for each temperature level in the specimen.

top grip

specimen

' '
L2

CLELI/7. 4/,

air bearing

straingaged
beam
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resistance pot

torge anmm — . - N
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Fig. 3. Apparatus for torsional relaxation measurement.
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Fig. 4. Torsional relaxation data for epoxy resin (Hercules 12KV10) at different temperatures.
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The equivalent log-decrement measured by using the above setup was checked, for a few
frequencies, against the values obtained by using the free vibration of a cantilever beam[19].
The results are shown in Table 3.

6. NUMERICAL FORMULATION FOR “STATIC” AND "REDUCED DYNAMIC” EQUATIONS

The integral equations (4.15) and (4.40) are solved in this section using a finite difference
discretization in time and space. The *‘reduced dynamic” equation represented by the two linear
second order integro-differential equations (4.19) and (4.42), are solved using a fourth order
Runge-Kutta method. The integral operators are expressed in terms of computationally efficient
algorithms and the recursion formulae derived where necessary. The computer programs have
been written to maintain the accuracy within a given tolerance by comparing the results of the
procedure with single and double increment.

Table 1. Least square dirichiet series for epoxy resin (Hercules

12KV 10)
Temperature  Weighting constants

°F w L] i Ti GI G(O)
0 o 07746

1 5 0.0659

350°F 0.0 0.0 2 25 0.0281
3 125 0.079%

4 500 0.0418

5 75 0.0108

0 « 08677

t 5 0.0366

200°F 0.01 0.0 225 o011
3125 00297

4 300 0.0244

5 600 0019

0 o 08902

1 5  0.0286

7°F 0.01 0.0 2 25 00077
3 125 0.0300

4 300 0.0211

5 600 0.0132

Table 2. Least square dirichlet
series for float glass

i T GiG(0)

0 o 0.0274
1 10 0.1020
2 50 0.0231
3 25.0 0.1710
4 125.0 0.3210
5 625.0 0.3740

Base temperature Tp = 1000°F;
weighting constants: w,= w,=

0.0, shift function ¢=10¥=
10[0.024!6(1- 1‘.)]_

Table 3. Comparison of log decrement obtained using cantilever beams for
epoxy resin (KV 10) (based on equivalent single degree of freedom analysis)

Temperature  Frequency Clamped beam Cantilever
°F) (Hz) (forced vibration) (free vibration)
7 28.80 0.130 0.153
200 21.15 0.140 0.146

350 21.94 0.135 0.121
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Fig. 5. Experimental apparatus for measusing the damping in epoxy beams.

6.1 Reduced time evaluation
The reduced time is given by the eqn (2.3) in the form

&z D)= fo ' o[T(z,, t)) dt’ ®.1)

where ¢(T) is the shift factor, a characteristic of the material. To avoid any roundoff errors
when successive values are subtracted, changes in reduced time are calculated using

tpe)

Az )= |7 $[T(xe ) d2. 6.2)

The reduced time parameter &(z,, ¢,) at any time ¢, is then given by
f(zm tp) = f(zm 'p—l) + Af(zm tp) (63)
with the initial value &(z,,0)=0. For brevity, the notation ¢,, will be used to represent the
reduced time parameter §(z,, £,).
The trapezoidal rule approximation for integrating equation (6.2) has been successfully used

by Frutiger and Woo{4]. Since the time increment considered here is small, following a similar
approach eqgn (6.3) can be expressed as

bup = buger + 52160+ i) (64

6.2 Algorithm for “static™ solution
Equations (4.15) and (4.40) are equivalent except for a function involving the space
co-ordinates. This function will be a constant when evaluated at a particular point in the
beam/plate. Hence only the development of a algorithm for a beam will be presented here.
Removing the singularity at t =0, eqn (4.15) can be written as

f.. 2. G- U(0)df+f I G- 5)3t—,dt'd-
oy 3L (o
= -~ [ 266 00 - ar -4z

~n(n- ”(1 £ )hf fG(g OB araz 6.5)

But, the temperature distribution (see Section 3) is

_ _M1 2ol -miwlat\ . mmw _
0—T-—T,—[-2-(l—z’) ﬂ;mexp(——lp——)sm 3 (z+l)]. (6.6)
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Therefore, substituting eqn (6.6) into egn (6.5) and expressing the relaxation modulus G(¢) in a
Dirichlet Series as

G(t)=Go+ 3, G

where G; and 7, are the spring moduli and relaxation times, the left side of the eqn (6.5)
becomes

26 U+ 222 G (0~ Ulty-lz? e e

+ ebna-tlT) 4 52 @ ~En-17i (g bu-1.d"i 4 gln-140-1IT)} 6.7)
where linear variation of the displacement has been assumed over every interval of the time

increment.
To separate the history effects from the rest of the expression define

P
DU(n,p)= 3, AU,fe"t" (eénd™ + ene-/m)} (6.8)
q=1

where AU, = U(t,_)). The advantage of the above expression is that it can be used to develop a

recursion formula which eliminates the history storage. Evaluating the eqn (6.8) at ¢,_, and

comparing the resuiting equation with that for ¢,, the expression (6.8) can be written as
DU'(n, p) = AU, (1 + & nrbnr-17) 4 g Hep=bns-V% DU¥(n, p - 1) 6.9

with the initial value DU'(n, 0)=0.
Hence the expression (6.7) becomes

26, U4)+4L S 3 122DV, )+ £, DUn - 1,p)] (6.10)
Following the above steps the right side of the eqn (6.5) can be expressed as

n(n—l)ﬁ%«n % 3 oy (11 + cos m)

e w_ 3apL? u 4 A7 At [
. M 5 ~EupT N L T 7 . al-minlalh?
sm,_z__(l.[..z").e fn,pi ’{ee"“]"e( & )q+e€.ﬂ_ﬁ;,e( |k ltq-;}

+ f,,_, sin%z(l + fn-—t) e"*-*«v”*‘{e‘”-‘f"f R e(—mzahiilﬂ)fq +e‘~-'-v~""f . e(—mZ-pz&lh’}t‘-;}} (6.11}
Now, defining

14
Ei( m,n, p) - z -Ait{ e—fmp/f;{efn_,,'r; . e(-mzsrzriﬂﬁ)tq + efu-ll’i . e(—mzvzﬂkg)f,_,} (6.12)
q=1

where At, = t, — t,.,, the recursion formula for time integration can be written as

Ei(m, n, p) = _Aitﬂ e"mﬂ’i{e EnpTi e(‘-mzw:tilhz)tp + e€”_,I'rge(-mlwzilh2)t,_|}

+ et 1 ear- I Ei(m, m, p ~ 1), with Ei(m, n,0) =0. 6.13)
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Hence the expression (6.11) becomes

(1 ( m2mw2alh? )1,)(1 +cos m7r)—

3|-

3al’ G
M- DG UG- 3T

n(n—l)(lﬂ?z-’:j-,;z(n T.)%%%} 33 G,m[z',, sin 2% (7, + 1)

E'(m, 1, p)+ oy sin B (7, + 1)+ Ei(m,n =1, p)) 6.14)

Now, substituting expressions (6.10) and (6.14) into eqn (6.5) the complete algorithm for
“static” solution becomes

% Go U(tp) + [U(‘p) - U(tp-l)] +ATZ' 2 2' % {2-"2(1 + e(‘fn.p*fn.ﬂ'l)h"

+ f}l-'(l + e(‘f.—l,p"'f“_'_’,__')lri)} - ﬂ 2

> [f e( nptbnp- )i

') LQ

DU(n,p— 1)+ 22_, e -t 10-¥7 DU (n — 1, p — 1)]+ K14(T,~ T)

% ; ’—nl-;(e“"'"’""”— 11 +cos mm)+ K12(T,~ TI)E?-AZiz ; ; Gm

[z, sin (2, + 1) E'(m, 1, p) + 2y Sin 5T (- + 1) Em, n = 1, p)] 6.15)

where

e oy 3al?
== -DE=5n

6.3 Algorithm for “ reduced dynamic™ solution

Since eqns (4.19) and (4.42) are equivalent except for the coefficients and a function
involving the space co-ordinates, the development of algorithm for eqn (4.19) will be presented
here.

Considering the initial conditions
w(n, 0) = sin m
and
Ww(n,0)=0 (6.16)
to study the free vibration of a beam, eqn (4.20) can be written as
a0)=1
with
4 & U
@(0) = gy (cos kw 1) Z —Bi 6.17)
Now, defining
@ =¢"= dgi’ (6.18)
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then eqn (4.19) can be expressed by two first order equations as

d ($3] Y
gt =4
with
gﬁ-_-,__ 4 - > U ~1B, ZI“ 52 (y -_C,,. 2)
df R (cos kar l);-gjﬁe o | 7Gx q'"d; oA 9 6.19)

where the subscript k has been omitted for simplicity.
Following the steps given in Section 5.2, the set of eqns (6.19) can be expressed as

d (I)’ )
dr — 49
and
-c-l-L(zI_—._ 4 - 3 U -8, _ 22 (1) 02 (1), _A_E-
7 7o (coskn 1);Efe ©’3 Gog"(t) -~ ’q"(0) 5
2 g Jr ) = _ . AZ G; .
5"_', 2 Glzle /4 7, e - 0?5 2 Z 5:{2’DQ(n, p)
+zz_,DQi(n—1,p)}—;Cj- 4%(t,) (6.20)
where
P .
DQ‘(n, p)= 2 Aq(':') {e'fu.p”i (efn.m/fi +efn.m-1’fi)}
m=1}
and

Aq('::) = q")(tm) - q“)(tm—l)'
The recursion formula for time integration will be
DQi(n, p) = Aq(1 + €™ bnp-vin) — e bas*ur-0 DQi(n, p - 1). 6.21)

The initial conditions for the eqn (6.20) are given by equation (6.17). A fourth order Runge~
Kutta approximation has been used to solve the above set of equations.

7. DISCUSSION AND CONCLUSIONS

The difficulty one faces in handling the solution to a thermoviscoelastic problem is mainly
due to incorporating the constitutive equation, which is in an integral form, into the equation of
motion and then satisfying the resulting nonhomogeneous boundary conditions. Also, the
effectiveness of any numerical solution to a particular problem depends on the material
characterization. Once a viscoelastic problem involves temperature as a function of space
co-ordinates, the material property will also become a function of space coordinates in addition
to time. This is the main obstacle in obtaining any type of closed form solution.

The use of the Williams-type modal expansion technique for splitting the solution into a
static and dynamic part reduces the computational time and cost for any dynamic problem
involving a thermo-viscoelastic material. Also, the convergence of the series evolved in such a
method has been shown to be much faster{9] than any other separation technique. The one
term approximation used in the present analysis has been found to be more than sufficient for
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most engineering applications. This is mainly due to the small magnitude of the amplitude of
vibration and its faster rate of decay at higher harmonics.

The present analysis has shown that the use of a Dirichlet series for representation of the
material relaxation functions commonly used for the solution of thermoviscoelastic stress
problems can also be conveniently used for solving thermoviscoelastic vibration problems. The
use of such a series eliminates the history storage thereby reducing the computational time and
cost. Such a representation was found to be more realistic than curve fitting the data by means
of polynomial approximations.

Figure 6 is a cubic spline fit for the decay of the amplitude of vibration at the mid point of a
simply supported float glass beam. At lower temperatures the beam tends to remain elastic in
nature for a longer period of time. However, at higher temperatures, the material property
starts off elastically and falls down very rapidly with time. As can be seen in Fig. 6, all the
curves follow elastic beam vibration initially and diverge as the time progresses. ,

Figure 7 shows the time dependent vibration of the mid point of a simply supported float
glass beam for the temperature extremes considered in this analysis. Even though the tem-
perature differential through the thickness is held constant, the change in the initial temperature
appears to induce a small change in the natural frequency of vibration.

Figures 8 and 9 respectively show the amplitude decay and the time dependent motion for a
typical float glass plate.

In all of the above discussions only the viscoelastic effect on the free vibration response of
beams and plates has been considered. It is well known that all materials exhibit damping,
called the internal damping, during any cyclic loading of the material. Figures 10-12 compare
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the experimentaily measured and theoretically obtained free vibration beam midpoint response
of epoxy resin simply supported beams at constant temperature. The theoretical results were
calculated by taking both material relaxation and internal damping into consideration. Com-
parison of the results show that the modeling of damping for beams and plates, as derived in
Appendix A is a reasonable way of handling the internal damping in viscoelastic materials.
Figures 13 and 14 compare the vibration decay of a simply supported float glass beam. Since
damping data[21] for float glass was not available at the temperature considered in the analysis,
an upper bound was considered for its value. It can be seen from Fig. 13 that, for float glass, the
internal damping does not have much effect on the decay of the amplitude of vibration.
Although it is known that damping is a function of frequency and temperature, the effect of

temperature distribution on damping has not been considered, it is expected that the damping
remains fairly constant.
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Fig. 11. Comparison of experimental and theoretical free vibration response of a simply supported epoxy
resin beam.
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Table 4. First natural frequency for float glass beams (Hz)

L-T\(H
Material LYh TP 50 75 100
Elastic 1000 - 92.5800 92.5800 92.5800
VEY  (h=0.005") 1000 93.7507 - 93.7501
V.E. 1025 93.7507 — 93.3611
V.E. 1050 93.7507 93.3611 92.9753
V.E. 1075 92.9705 - 91.8369
V.E. 1100 91.6498 - —
Elastic 750 - 123.4380 1234380  123.4380
V.E. (h=0.05") 1000 125.0001 - -
V.E. 1025 125.0001 — —
V.E. 1050 124.7403 - -
V.E. 1075 124.2238 - -
V.E. 1100 122.6996 - -

tViscoelastic.

-3
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Table 5. First natural frequency for float glass plates (Hz)

L-T\CF)
Material a*h alb T, CF) 50 75 100

Elastic 1000 1.00 — 189.807 189.807 189.807
V.R.? (h=0.1" 1025 191.919 —_ 191.533
V.E. 1050 191.919 — 191.147
V.E. 1075 191.533 191.147 190.381
V.E. 1100 190.381 — -

Elastic 1000 0.50 - 118.630 118.630 118.630
V.E. (h=0.1" 1025 120.000 —_ —_
V.E. 1050 120.000 —_ -
V.E. 1075 119.565 — -
V.E. 1100 118.535 - -

tViscoelastic.

Tables 4 and 5 tabulate the natural frequency for float glass beams and plates of various
sizes and temperatures. The changes seen are very small. The natural frequencies for such
viscoelastic materials can therefore be approximately calculated using the elastic material
properties at the temperature under consideration.
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APPENDIX A
Equivalent viscous damping for simply supported beams and plates
For any vibrating system the strain generaily lags the applied stress by some value. This phenomenon which results in
dissipation of energy is termed internal damping. Internal damping for a long time has been modeiled using single degree of
freedom damping([14] as shown in the Fig. Al. The steady state forced displacement for such a vibrating system can be
written as

X = Xo COS wt (AD)
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p e s .17

|
— L
P(X)

Fig. Al. One dimensional model for viscous damping.

where w is the excitation frequency. The energy loss per cycle for such a system in steady forced vibration is
2wle
D= f m (A)
0

Substituting egn (A1) into eqn (A2) the energy loss per cycle can be written as
D= mc xjtw. (A3)
For a simply supported beam the steady state fundamental mode response can be approximated by

L2

T sin w! (Ad)

w(x, t) = wysin
where o is the frequency of excitation. The energy loss per cycle due to internal damping is
L pivie 2
D= I [ o ("—‘”) dtdx (AS)
o Jo at
where C, is the equivalent viscous damping. Substituting eqn (A4) into (AS), the energy loss will become

D=5w G Lo (A6)

SE

Equating eqns (A3) and (A6), the coeflicient of equivalent viscous damping can be written as

2
C|,=C£%§'

Hence, to evaluate the equivalent viscous damping for a simply supported beam, it is necessary to determine the damping
coefficient *¢™ of the corresponding single degree of freedom system at the excitation frequency of the beam.

If the damping coefficient ““c” of the single degree of freedom system is determined using log decrement[19] of a tuned
cantilever beam, the eqn (A7) reduces to :

. (A7)

(ol L

Cy=2364c/L (A8)

where L is the length of the simply supported beam.
For a simply supported plate the steady state fundamental mode response can be written as

w(x, y, )= wpsin %x - sin ZI;X - sin wt. (A9)

Following the steps used for a simply supported beam the coefficient of equivalent viscous damping can be obtained in the
form

2
C,=4.4995- ¢ -%’}%, (A10)

where A and L are respectively the area of cross-section and length of the tuned cantilever beam and a, b and h are the
plate dimensions.

In the above analysis, even though the damping is a function of temperature, it has been assum>d to be a constant, The
error involved due to this assumption is minimal, except near the glass transition temperature.



